2013年9月5日星期四

Breakthrough Could Make Electronics Smaller and Better

Thus the new work is "consistent with the hypothesis" of coevolution between language and toolmaking, "but not proof of it," says Michael Corballis, a psychologist at the University of Auckland in New Zealand. "It is possible that language itself emerged much later, but was built on circuits established during the Acheulean" period.Thomas Wynn, an archaeologist at the University of Colorado, Colorado Springs, is even more cautious about the results. He thinks that the fTCD technique, which measures blood flow to large areas of the cerebral cortex but does not have as high a resolution as fMRI or PET, "is a crude measure, even for brain imaging techniques."

As a result, Wynn says, he is "far from convinced" that the study has anything new to say about language evolution.Combining several standard nanofabrication techniques -- with the final addition of the Scotch Magic tape -- researchers at the University of Minnesota created extremely thin gaps through a layer of metal and patterned these tiny gaps over the entire surface of a four-inch silicon wafer. The smallest gaps were only one nanometer wide, much smaller than most researchers have been able to achieve. In addition, the widths of the gaps could be controlled on the atomic level. This work provides the basis for producing new and better nanostructures that are at the core of advanced electronic and optical devices.

One of the potential uses of nanometer-scale gaps in metal layers is to squeeze light into spaces much smaller than is otherwise possible. Collaborators at Seoul National University, led by Prof. Dai-Sik Kim, and Argonne National Laboratory, led by Dr. Matthew Pelton, showed that light could readily be squeezed through these gaps, even though the gaps are hundreds or even thousands of times smaller than the wavelength of the light used. Researchers are very interested in forcing light into small spaces because this is a way of boosting the intensity of the light. The collaborators found that the intensity inside the gaps is increased by as much as 600 million times.

没有评论:

发表评论